By Bernie Hobbs
Scientists have finally found direct evidence of gravitational waves — a feat Albert Einstein never thought we would manage. But what does this discovery actually mean?
For starters, it opens a new field of astronomy — gravitational wave astronomy — that will let us see everything from the heart of a black hole, to the moments after the Big Bang.
What are gravitational waves?
Einstein’s general theory of relativity tells us that gravity is the curvature of space and time.
The stronger the gravity an object has, the greater the deformation of space and time it causes.
Gravitational waves are caused when objects with strong gravity accelerate. As they accelerate, ripples of space travel away from them at the speed of light.
They are not like light waves travelling through space, they are actual waves in space: rhythmic stretching and squeezing of space.
All objects sitting in the path of gravitational waves rhythmically move further apart and closer together as the space they exist in is stretched and squeezed.
The strongest gravitational waves — the only ones we have a hope of detecting — are formed when objects with enormous gravity undergo dramatic acceleration. Like when two black holes merge to form another.
If scientists have indeed detected the to and fro movement caused by passing gravitational waves it will be a monumental achievement.
These ripples are so small — only a fraction the size of an atom — that Einstein thought they had to be beyond our technology.
What does the discovery mean?
Being able to detect and measure gravitational waves opens up an entire new field of astronomy.